学习在未知环境中安全导航是监视和救援操作中使用的自动无人机的重要任务。近年来,已经提出了许多基于学习的同时定位和映射(SLAM)系统,这些系统依靠深神经网络(DNN)(DNNS)提出了用于传统功能描述符表现不佳的应用。但是,这种基于学习的SLAM系统依靠DNN功能编码在典型的深度学习环境中训练有素的离线训练。这使得它们不太适合在训练中未见的环境中部署的无人机,在训练中,持续适应至关重要。在本文中,我们提出了一种新的方法,可以通过调节低复杂性词典学习和稀疏编码(DLSC)管道,并使用新提出的二次贝叶斯惊喜(QBS)因素调节,以学习在未知环境中即时猛烈抨击。我们通过在充满挑战的仓库场景中通过无人机收集的数据来实验验证我们的方法,在这种情况下,大量模棱两可的场景使视觉上的歧义很难。
translated by 谷歌翻译
我们介绍了基于优化的理论,描述了在视觉皮质中的经验观察到的尖刺皮质组合,其配备有尖峰定时依赖性塑性(STDP)学习。使用我们的方法,我们为基于事件的相机构建了一类完全连接的,基于卷积和动作的特征描述符,即我们分别评估N-Mnist,挑战Cifar10-DVS以及IBM DVS128手势数据集。与传统的最先进的事件的特征描述符相比,我们报告了显着的准确性改进(CIFAR10-DVS上的+ 8%)。与最先进的STDP的系统(在N-MNIST上+ 10%+ 10%+ 10%,在IBM DVS128手势上举报的准确性提高了大量改进)。除了神经形态边缘装置的超低功率学习之外,我们的作品还有助于铺平朝向基于生物学 - 基于的皮质视觉理论的方式。
translated by 谷歌翻译
无监督的域适应性(UDA)是一个至关重要的协议,用于迁移从标记的源域中学到的信息,以促进未标记的异质目标域中的实现。尽管UDA通常经过来自两个域的数据的共同培训,但由于对患者数据隐私或知识产权的担忧,访问标记的源域数据通常受到限制。为了避开此问题,我们提出了“现成的(OS)” UDA(OSUDA),针对图像分割,通过调整在源域中训练的OS进行调整到目标域,在适应中没有源域数据的情况下, 。为了实现这一目标,我们旨在开发新的批准归一化(BN)统计适应框架。特别是,我们通过指数型衰减策略逐渐适应了特定于域的低阶BN统计数据,例如平均值和差异,同时明确执行可共享的可共享高阶BN统计的一致性,例如,扩展和转移因子缩放和转移因子。 ,通过我们的优化目标。我们还通过低阶统计差异和缩放因素来自适应量化通道的可传递性,以评估每个通道的重要性。记忆一致的自我训练策略利用可靠的伪标签来稳定,有效的无监督适应。我们评估了基于OSUDA的跨模式和交叉型脑肿瘤分割和心脏MR到CT分割任务的框架。我们的实验结果表明,我们的内存一致性的OSUDA的性能优于现有的 - 源 - 删除的UDA方法,并且具有与源数据的UDA方法相似的性能。
translated by 谷歌翻译
由于各种物理降解因素和收到有限的计数,宠物图像质量需要进一步改进。去核扩散概率模型(DDPM)是基于分布学习的模型,它们试图根据迭代改进将正态分布转换为特定的数据分布。在这项工作中,我们提出并评估了基于DDPM的不同基于DDPM的方法,以进行PET图像Denoisising。在DDPM框架下,执行PET图像Denoising的一种方法是提供PET图像和/或先前的图像作为网络输入。另一种方法是将先前的图像作为输入提供,其中包含在改进步骤中的PET图像,这可以适合不同噪声水平的方案。 120 18F-FDG数据集和140个18F-MK-6240数据集用于评估所提出的基于DDPM的方法。量化表明,基于DDPM的框架包含PET信息可以比非本地平均值和基于UNET的DeNoising方法产生更好的结果。在模型中添加额外的先验可以帮助实现更好的性能,并进一步降低图像deNosing过程中的不确定性。在忽略宠物信息的同时,仅依靠先验先验会导致巨大的偏见。区域和表面量化表明,在推断过程中嵌入PET图像作为数据一致性约束的同时,使用MR作为网络输入可以达到最佳性能。总而言之,基于DDPM的PET图像Denoisising是一个灵活的框架,它可以有效地利用先前的信息并获得比非本地平均值和基于UNET的DeNoising方法更好的性能。
translated by 谷歌翻译
积极和消极的关系在人类行为中起着至关重要的作用,并塑造了我们所生活的社区。尽管有重要的数据,但有关签署关系的数据很少见,并且通常通过调查收集。相互作用数据以接近或通信数据的形式更丰富。但是,到目前为止,它不能用于检测签署的关系。在本文中,我们展示了如何使用此类数据提取基础签名关系。采用统计网络方法,我们在四个社区中构建了签名关系网络。然后,我们证明这些关系与调查中报道的关系相对应。此外,推断的关系使我们能够在性别,宗教信仰和财务背景方面研究个人的同质性。我们评估了三合会在签名网络中研究组凝聚力的重要性。
translated by 谷歌翻译
常规的反犯罪方法主要集中于防止通过不变政策或与具有类似障碍政策的多个干扰者的攻击进行不变的攻击。这些抗界方法在几种不同的干扰策略或具有不同策略的多个干扰器之后,对单个干扰器无效。因此,本文提出了一种反判断方法,可以使其政策适应当前的干扰攻击。此外,对于多个干扰器情景,提出了一种反杀伤方法,该方法在以前的插槽中估算了使用卡默斯占领的通道估算未来占用的通道。在单个干扰器的情况下,用户和干扰器之间的相互作用是使用复发性神经网络(RNN)s建模的。通过计算用户的成功传输速率(STR)和厄贡速率(ER),评估所提出的抗界方法的性能,并与基于Q学习(DQL)的基线进行比较。仿真结果表明,对于单个干扰器方案,完美地检测到所有考虑的干扰策略,并保持高STR和ER。此外,当70%的频谱受到多个干扰器的干扰攻击时,该提出的方法分别达到了STR和ER大于75%和80%。当频谱的30%处于干扰攻击下时,这些值上升到90%。此外,针对所有考虑的情况和干扰场景,提出的抗界方法显着优于DQL方法。
translated by 谷歌翻译
无监督的域适应性(UDA)已被广泛用于将知识从标记的源域转移到未标记的目标域,以抵消在新域中标记的难度。常规解决方案的培训通常依赖于源和目标域数据的存在。但是,源域和经过训练的模型参数中大规模和标记的数据的隐私可能成为跨中心/域协作的主要关注点。在这项工作中,为了解决这个问题,我们为UDA提出了一个实用的解决方案,以使用仅在源域中训练的黑框分割模型,而不是原始源数据或白盒源模型。具体而言,我们求助于具有指数混合衰减(EMD)的知识蒸馏方案,以逐步学习针对目标的表示。另外,无监督的熵最小化进一步应用于目标域置信度的正则化。我们在Brats 2018数据库上评估了我们的框架,并以White-Box源模型适应方法在标准杆上实现了性能。
translated by 谷歌翻译
无监督的域适应性(UDA)已成功地应用于没有标签的标记源域转移到目标域的知识。最近引入了可转移的原型网络(TPN),进一步解决了班级条件比对。在TPN中,虽然在潜在空间中明确执行了源和目标域之间的类中心的接近度,但尚未完全研究基础的细颗粒亚型结构和跨域紧凑性。为了解决这个问题,我们提出了一种新方法,以适应性地执行细粒度的亚型意识对准,以提高目标域的性能,而无需两个域中的子类型标签。我们方法的见解是,由于不同的条件和标签变化,同类中未标记的亚型在亚型内具有局部接近性,同时表现出不同的特征。具体而言,我们建议通过使用中间伪标签同时执行亚型的紧凑度和阶级分离。此外,我们系统地研究了有或不具有亚型数字的各种情况,并建议利用基本的亚型结构。此外,开发了一个动态队列框架,以使用替代处理方案稳步地进化亚型簇质心。与最先进的UDA方法相比,使用多视图的先天性心脏病数据和VISDA和域进行了实验结果,显示了我们的亚型意识UDA的有效性和有效性。
translated by 谷歌翻译
深度学习已成为解决不同领域中现实世界中问题的首选方法,部分原因是它能够从数据中学习并在广泛的应用程序上实现令人印象深刻的性能。但是,它的成功通常取决于两个假设:(i)精确模型拟合需要大量标记的数据集,并且(ii)培训和测试数据是独立的且分布相同的。因此,不能保证它在看不见的目标域上的性能,尤其是在适应阶段遇到分布数据的数据时。目标域中数据的性能下降是部署深层神经网络的关键问题,这些网络已成功地在源域中的数据训练。通过利用标记的源域数据和未标记的目标域数据来执行目标域中的各种任务,提出了无监督的域适应(UDA)来对抗这一点。 UDA在自然图像处理,视频分析,自然语言处理,时间序列数据分析,医学图像分析等方面取得了令人鼓舞的结果。在本综述中,作为一个快速发展的主题,我们对其方法和应用程序进行了系统的比较。此外,还讨论了UDA与其紧密相关的任务的联系,例如域的概括和分布外检测。此外,突出显示了当前方法和可能有希望的方向的缺陷。
translated by 谷歌翻译
在本文中,我们提出了Primatul,这是一种用于从细粒识别中使用的数据集的零件检测器无监督学习的新型算法。它利用了训练集中所有图像的宏观相似性,以便在预先训练的卷积神经网络的特征空间中进行重复的模式。我们提出了实施检测部件的局部性和统一性的新目标功能。此外,我们根据相关评分将检测器嵌入置信度度量,从而允许系统估计每个部分的可见性。我们将我们的方法应用于两个公共细粒数据集(Caltech-UCSD Bird 200和Stanford Cars),并表明我们的探测器可以一致地突出物体的一部分,同时很好地衡量了对其预测的信心。我们还证明,这些探测器可直接用于构建基于零件的细粒分类器,这些分类器在基于原型的方法的透明度与非解剖方法的性能之间提供了良好的折衷。
translated by 谷歌翻译